Neural nets 101 - Backpropagation & training tricks

In this tutorial, we dive into backprop and build our first simple neural network.

NN02 - Backpropagation, and training tricks

In this notebook:

  • learning
  • the backpropagation algorithm
  • Local minima, term of momentum
  • Regularisation techniques
  • Learning evaluation and generalisation

Backpropagation algorithm

  1. Propogate
  2. Compute error
  3. Back-propogate error and change weights.

<img src=”backprop.png”,width=500,height=600>

from math import exp
from random import seed
from random import random
 
# Initialize a network
def initialize_network(n_inputs, n_hidden, n_outputs):
    network = list()
    hidden_layer = [{'weights':[random() for i in range(n_inputs + 1)]} for i in range(n_hidden)]
    network.append(hidden_layer)
    output_layer = [{'weights':[random() for i in range(n_hidden + 1)]} for i in range(n_outputs)]
    network.append(output_layer)
    return network
 
# Calculate neuron activation for an input
def activate(weights, inputs):
    activation = weights[-1]
    for i in range(len(weights)-1):
        activation += weights[i] * inputs[i]
    return activation
 
# Transfer neuron activation
def transfer(activation):
    return 1.0 / (1.0 + exp(-activation))
 
# Forward propagate input to a network output
def forward_propagate(network, row):
    inputs = row
    for layer in network:
        new_inputs = []
        for neuron in layer:
            activation = activate(neuron['weights'], inputs)
            neuron['output'] = transfer(activation)
            new_inputs.append(neuron['output'])
        inputs = new_inputs
    return inputs
 
# Calculate the derivative of an neuron output
def transfer_derivative(output):
    return output * (1.0 - output)
 
# Backpropagate error and store in neurons
def backward_propagate_error(network, expected):
    for i in reversed(range(len(network))):
        layer = network[i]
        errors = list()
        if i != len(network)-1:
            for j in range(len(layer)):
                error = 0.0
                for neuron in network[i + 1]:
                    error += (neuron['weights'][j] * neuron['delta'])
                errors.append(error)
        else:
            for j in range(len(layer)):
                neuron = layer[j]
                errors.append(expected[j] - neuron['output'])
        for j in range(len(layer)):
            neuron = layer[j]
            neuron['delta'] = errors[j] * transfer_derivative(neuron['output'])
 
# Update network weights with error
def update_weights(network, row, l_rate):
    for i in range(len(network)):
        inputs = row[:-1]
        if i != 0:
            inputs = [neuron['output'] for neuron in network[i - 1]]
        for neuron in network[i]:
            for j in range(len(inputs)):
                neuron['weights'][j] += l_rate * neuron['delta'] * inputs[j]
                neuron['weights'][-1] += l_rate * neuron['delta']
 
# Train a network for a fixed number of epochs
def train_network(network, train, l_rate, n_epoch, n_outputs):
    for epoch in range(n_epoch):
        sum_error = 0
        for row in train:
            outputs = forward_propagate(network, row)
            expected = [0 for i in range(n_outputs)]
            expected[row[-1]] = 1
            sum_error += sum([(expected[i]-outputs[i])**2 for i in range(len(expected))])
            backward_propagate_error(network, expected)
            update_weights(network, row, l_rate)
        print('>epoch=%d, lrate=%.3f, error=%.3f' % (epoch, l_rate, sum_error))
 
# Test training backprop algorithm
seed(1)
dataset = [[2.7810836,2.550537003,0],
    [1.465489372,2.362125076,0],
    [3.396561688,4.400293529,0],
    [1.38807019,1.850220317,0],
    [3.06407232,3.005305973,0],
    [7.627531214,2.759262235,1],
    [5.332441248,2.088626775,1],
    [6.922596716,1.77106367,1],
    [8.675418651,-0.242068655,1],
    [7.673756466,3.508563011,1]]
n_inputs = len(dataset[0]) - 1
n_outputs = len(set([row[-1] for row in dataset]))
network = initialize_network(n_inputs, 2, n_outputs)
train_network(network, dataset, 0.5, 20, n_outputs)
for layer in network:
    print(layer)
    
    
    
>epoch=0, lrate=0.500, error=6.350
>epoch=1, lrate=0.500, error=5.531
>epoch=2, lrate=0.500, error=5.221
>epoch=3, lrate=0.500, error=4.951
>epoch=4, lrate=0.500, error=4.519
>epoch=5, lrate=0.500, error=4.173
>epoch=6, lrate=0.500, error=3.835
>epoch=7, lrate=0.500, error=3.506
>epoch=8, lrate=0.500, error=3.192
>epoch=9, lrate=0.500, error=2.898
>epoch=10, lrate=0.500, error=2.626
>epoch=11, lrate=0.500, error=2.377
>epoch=12, lrate=0.500, error=2.153
>epoch=13, lrate=0.500, error=1.953
>epoch=14, lrate=0.500, error=1.774
>epoch=15, lrate=0.500, error=1.614
>epoch=16, lrate=0.500, error=1.472
>epoch=17, lrate=0.500, error=1.346
>epoch=18, lrate=0.500, error=1.233
>epoch=19, lrate=0.500, error=1.132
[{'weights': [-1.4688375095432327, 1.850887325439514, 1.0858178629550297], 'output': 0.029980305604426185, 'delta': -0.0059546604162323625}, {'weights': [0.37711098142462157, -0.0625909894552989, 0.2765123702642716], 'output': 0.9456229000211323, 'delta': 0.0026279652850863837}]
[{'weights': [2.515394649397849, -0.3391927502445985, -0.9671565426390275], 'output': 0.23648794202357587, 'delta': -0.04270059278364587}, {'weights': [-2.5584149848484263, 1.0036422106209202, 0.42383086467582715], 'output': 0.7790535202438367, 'delta': 0.03803132596437354}]

Limitations of backpropagation

  • problem of local minima
  • lack of biological plausibility

Adding term of momentum:

Generalisation:

Bootstrapping:

Weight decay:

Second-order methods - hessian:

**Levenberg-Marquardt


Written on January 2, 2018