Here is an overview of some common mathematical formulas from the field of neural networks.
====================================
Perceptron
Calculating output
<img src=”f_perc.png”,width=200,height=200>
Calculating error
Changing weights
<img src=”f_plearn.png”,width=180,height=180>
Activation functions
<img src=”activ.png”,width=900,height=800>
====================================
Backpropagation
Gradient of the error function:
<img src=”f_bp.png”,width=200,height=200>
Gradient descent
<img src=”f_gd.png”,width=200,height=200>
<img src=”f_bp2.png”,width=250,height=250>
… tries to minimise the network’s global error function:
<img src=”f_error.png”,width=200,height=200>
Local error
<img src=”f_lerror.png”,width=250,height=250>
Momentum
<img src=”f_mom.png”,width=300,height=250>
Weight decay
<img src=”f_wd.png”,width=300,height=250>
====================================
Hebb’s rule
Learning rule for bipolar activation:
<img src=”f_hebb.png”,width=180,height=180>
Sign activiation function
<img src=”f_sign.png”,width=180,height=180> Where:
- sign(x) = 1 if x > 0
- *sign(x) = -1 if x < 0 *
- sign(x) = Ai(t) if x = 0
====================================
Hopfield networks
Storage phase
<img src=”f_hop.png”,width=180,height=180>
Hopfield energy function
<img src=”f_energy.png”,width=300,height=250>
====================================
Self-organizing maps (SOM)
Minimising Euclidean distance in competition phase
<img src=”f_min.png”,width=180,height=180>
Cooperation
<img src=”f_coop.png”,width=250,height=180>
Synaptic adaptation
<img src=”f_syn.png”,width=200,height=180>
====================================
Boltzmann machines
Energy of a BM
<img src=”f_ebm.png”,width=300,height=200>
Difference in energy when a single unit i is flipped from off to on
<img src=”f_edelta.png”,width=400,height=200>
Gibbs sampling
<img src=”f_gibbs.png”,width=200,height=200>
Boltzmann learning rule
<img src=”f_boltz.png”,width=180,height=180>
====================================
Support vector machines (SVM)
Calculating functional margin
<img src=”f_fm.png”,width=400,height=200>
Normalization
<img src=”f_norm.png”,width=200,height=200>
Convex optimization
<img src=”f_co.png”,width=300,height=200>
Support vectors
<img src=”f_sv.png”,width=350,height=250>
Lagrange duality
<img src=”f_lag.png”,width=350,height=250> <img src=”f_lag2.png”,width=400,height=300>
Calculating a feature mapping (too expensive)
<img src=”f_map.png”,width=150,height=150>
Polynomial kernel trick
<img src=”f_poly.png”,width=100,height=130>
Gaussian kernel trick
<img src=”f_gaus.png”,width=160,height=160>