In this 3-part series, I’ll be going through some basic tensor operations in pyTorch.
pyTorch is an open source deep learning platform that provides a seamless path from research prototyping to production deployment.
from __future__ import print_function
import torch
Constructing a 5x3 matrix
x = torch.empty(5,3)
print(x)
tensor([[ 0.0000e+00, 1.0842e-19, -3.1118e-18],
[ 8.5920e+09, 4.9371e-37, 1.4013e-45],
[ 9.2354e-37, 1.4013e-45, 6.4097e-10],
[ 6.4097e-10, 6.4097e-10, 6.4097e-10],
[ 6.4097e-10, 6.4097e-10, 6.4097e-10]])
Constructing a randomly initialized matrix
x = torch.rand(5,3)
print(x)
tensor([[0.4258, 0.3095, 0.4439],
[0.6245, 0.1630, 0.9765],
[0.9851, 0.8920, 0.7059],
[0.4985, 0.9556, 0.0502],
[0.4168, 0.9831, 0.0360]])
Construct a matrix filled with zeros and of dtype long
x = torch.zeros(5,4,dtype=torch.long)
print(x)
tensor([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])
Construct a tensor directly from data
x = torch.tensor([5.5, 3])
print (x)
tensor([5.5000, 3.0000])
Create a tensor based on an existing tensor. These methods will reuse properties of the input tensor, e.g. dtype, unless new values are provided by user
x = x.new_ones(5, 3, dtype=torch.double) # new_* method takes in sizes
print(x)
x = torch.randn_like(x, dtype=torch.float)
print(x)
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], dtype=torch.float64)
tensor([[ 0.0462, -1.2396, -0.0415],
[ 0.8868, -1.5131, 1.5147],
[ 1.0145, 0.2150, 1.2778],
[ 0.7786, -0.1636, -0.3087],
[-0.0846, 0.8452, 0.2403]])
Get it’s size
print(x.size())
torch.Size([5, 3])
Operations
Addition
y = torch.rand(5,3)
print(x+y)
tensor([[ 5.6409e-02, -8.4203e-01, 9.3244e-02],
[ 1.6478e+00, -6.7512e-01, 2.4597e+00],
[ 1.7626e+00, 8.3986e-01, 2.0402e+00],
[ 1.4260e+00, 7.9624e-01, -2.6055e-02],
[-1.9657e-03, 9.0799e-01, 5.5779e-01]])
#or method 2
print(torch.add(x, y))
tensor([[ 5.6409e-02, -8.4203e-01, 9.3244e-02],
[ 1.6478e+00, -6.7512e-01, 2.4597e+00],
[ 1.7626e+00, 8.3986e-01, 2.0402e+00],
[ 1.4260e+00, 7.9624e-01, -2.6055e-02],
[-1.9657e-03, 9.0799e-01, 5.5779e-01]])
# Addition: providing an output tensor as argument
result = torch.empty(5,3)
torch.add(x, y, out=result)
print(result)
tensor([[ 5.6409e-02, -8.4203e-01, 9.3244e-02],
[ 1.6478e+00, -6.7512e-01, 2.4597e+00],
[ 1.7626e+00, 8.3986e-01, 2.0402e+00],
[ 1.4260e+00, 7.9624e-01, -2.6055e-02],
[-1.9657e-03, 9.0799e-01, 5.5779e-01]])
# addition in place
y.add_(x)
print(y)
tensor([[ 5.6409e-02, -8.4203e-01, 9.3244e-02],
[ 1.6478e+00, -6.7512e-01, 2.4597e+00],
[ 1.7626e+00, 8.3986e-01, 2.0402e+00],
[ 1.4260e+00, 7.9624e-01, -2.6055e-02],
[-1.9657e-03, 9.0799e-01, 5.5779e-01]])
Note: Any operation that mutates a tensor in-place is post-fixed with an . For example: x.copy(y), x.t_(), will change x.
standard numpy indexing available:
print(x[:,1])
tensor([-1.2396, -1.5131, 0.2150, -0.1636, 0.8452])
Resizing/ shaping the tensor
x = torch.randn(4,4)
y = x.view(16)
z = x.view(-1,8) #size -1 is inferred from other dimensions
print(x.size(), y.size(), z.size() )
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])
print(x)
print(y)
print(z)
tensor([[ 1.6827, 0.8553, 0.7791, -1.3447],
[ 0.2892, 0.8515, -0.7454, -0.0041],
[-1.7828, 0.8462, -0.1214, 0.0126],
[-0.1525, -1.4152, 0.3365, -0.5977]])
tensor([ 1.6827, 0.8553, 0.7791, -1.3447, 0.2892, 0.8515, -0.7454, -0.0041,
-1.7828, 0.8462, -0.1214, 0.0126, -0.1525, -1.4152, 0.3365, -0.5977])
tensor([[ 1.6827, 0.8553, 0.7791, -1.3447, 0.2892, 0.8515, -0.7454, -0.0041],
[-1.7828, 0.8462, -0.1214, 0.0126, -0.1525, -1.4152, 0.3365, -0.5977]])
If you have a one element tensor, use .item() to get the value as a Python number
x = torch.randn(1)
print(x)
print(x.item())
tensor([0.7438])
0.7437915205955505
The numpy bridge
Converting a Torch Tensor to a NumPy array and vice versa is a breeze.
The Torch Tensor and NumPy array will share their underlying memory locations, and changing one will change the other.
Converting a Torch Tensor to a NumPy Array
a = torch.ones(5)
print(a)
tensor([1., 1., 1., 1., 1.])
b = a.numpy()
print(b)
[1. 1. 1. 1. 1.]
a.add_(1)
print(a)
print(b)
tensor([2., 2., 2., 2., 2.])
[2. 2. 2. 2. 2.]
Converting numpy array to torch tensor
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)
[2. 2. 2. 2. 2.]
tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
CUDA tensors
Tensors can be moved onto any device using the .to method.
# let us run this cell only if CUDA is available
# we will use ''torch.device'' objects to move tensors in and out of GPU
if torch.cuda.is_available():
device = torch.device("cuda") # CUDA device object
y = torch.ones_like(x, device=device)
x = x.to(device)
z = x + y
print(z)
print(z.to("cpu", torch.double))